
Managing Descriptive Metadata 
with Open XML

Gregory Wiedeman

University Archivist

University at Albany, SUNY

GWiedeman@albany.edu

@GregWiedeman



Why not ArchivesSpace?

• Legacy unstructured HTML finding aids

• Finishing large EAD conversion project

• Challenging migration of local accession database 

• Costly: disproportionate membership fee

– Little public documentation for automation

• Costly: metadata normalization

• No ArchiveSpace, yet…



Opportunity

• Develop basic metadata infrastructure first, 
implement more complex tools second

• Modularize metadata management
– adapt to constant change in tools

• Control over exactly how strict to make 
metadata controls in the immediate term

• Yet had to address problems developing 
systems with open XML
– inadequate data controls



Consistent Creation: EADMachine
• Converts between Excel 

spreadsheet and complete EAD

• Creates flat HTML access file

• Written in Python, complied to C, 
runs on any machine without 
dependencies

• Matches local EAD 
implementation

• Basic GUI interface

• Works with complex hierarchies 
up to <c12> (not recommended)

• Compatible with EAD2002 and 
EAD3

https://github.com/gwiedeman/eadmachine



Consistent Creation: EADMachine
Successes and difficulties

https://github.com/gwiedeman/eadmachine

• First large-scale project, lots of bad code
• Long time to develop 
• Very easy to implement and use in our specific environment
• Creates standardized EAD



Strict Control: EADValidator
• Python rule-based validation tool
• .EXE file reads all EAD XML files in directory and produces Bootstrap 

HTML report
• Architecture designed also for automated processes
• Mandates many DACS rules
• 300+ Detailed Rules:

– 183 at collection-level
– 34 at series-level
– 47 at file-level
– 25 at item-level
– 12 for each @normal date

• Does one thing, easy to develop, ~20 hours
• Not all data is standardized but have a documented set of what is 

standardized

https://github.com/UAlbanyArchives/EADValidator



Strict Control: EADValidator
Legacy <physdesc>

• <extent> is controlled

• <physfacet> is uncontrolled

<extent @unit=”cubic ft.”>23.5</extent>

<physfacet>29 folders and 1 giraffe</physfacet>



Unique Identification

• Simple script to insert ids based on collection ids 
and context in hierarchy
– independent of containers

– nam_ua629-1_132

– nam_apap101-1.2_49



Automated Records: AutoUpload

AutoUpload.py 

• Automatically uploads PDF 
scans based on ID in filename

• Archivists reviews scans for 
restrictions, etc. and copies 
to upload folder

• Automatically updates EAD

1. Detects new file
2. Creates log
3. Logs original finding aid
4. Bags preservation copy
5. Uploads access copy
6. Copies finding aid to 

working directory
7. Inserts <dao>
8. Logs both original and 

modified record
9. Validates finding aid
10. Writes finding aid
11. converts to HTML
12. Any errors freezes 

process, dumps to error 
folder, sends email

https://github.com/UAlbanyArchives/AutoUpload



Automated Records: AutoUpload

AutoUpload.py 

• Enables mass digitization based on use

• Simple to initially develop, 20-25 hours, more 
time for testing

• Further potential

– Automated requests from finding aids

– Automated post to twitter?

https://github.com/UAlbanyArchives/AutoUpload



Metadata Infrastructure

• Modular system based on simple functional needs

• Strict controls enable automation

• Can later implement larger tools
– New access system in development

– Need to adopt preservation system, new accession 
system.

– Can easily adapt to automated description of born-
digital records

Gregory Wiedeman
University Archivist
University at Albany, SUNY
Gwiedeman@albany.edu

@GregWiedeman
https://github.com/gwiedeman
https://github.com/UAlbanyArchives


